IGC White Paper:

Brava!® scalability and fault tolerance

RIGC

Informative Graphics Corporation

Brava!® scalability and fault tolerance 2

1 Brava! Y of- | E-1 011 11 47 25ROy |

1.1 Brava scalability and fault tolerance introdUuction...........cccvviieiiiii e 4
1.2 (0o] oToY aT=T 0] Ao AV L= Y/ =Y S 4
1.2.1 Brava ENteIPriSE SEIVEN ...uuuiieiiiiiiiiiiiitiietttreeerererererereeereeeeeeeeeteeeteteretetereteseeeeeeeeeeeeeeeeeeeeeeaeeeees 5
1.2.2 Brava ENterprise LICENSE SEIVETuuuuiiiiiiiiiiiiiiiiiiiiiirirrerererereeereeeeeeeseseeeseseseseseeeseseeeseseseeeeaees 5
123 Brava JOD PrOCESSONuiiiieiiiiieiteecte sttt s seme e e s e e s 6
1.3 1T A =SSP 6
1.4 (O 1= oY e o [l o 1U] o] 11 o117 = SRR 6
1.5 OVerall architeCtUre CONCEIMS.iiiiii ittt ettt ettt ettt e sab e e st e s be e s sateesbeesabeeeaeeas 7
1.6 General Brava ENterpriSE SEIVEIcuiiii ettt ettt e e et e e s sabe e e s sataeeessbaeeesnseeees 7
1.6.1 Brava Enterprise Server Bandwidth requirementscccoccveeeiiiiie e 7
1.6.2 Display list cache SCalabilityceceieeciiiiieee e e e e 7
1.6.3 YT U oI o = - USSR 8
1.7 Brava ENterpriSe SEIVIET SEIVEIo.uuiiiiiiie ettt e e e e e et e e e e e e e e enbae e e e e e s e ssanreaaeeaaesennnnns 8
1.7.1 Server Load BalanCiNgcuvee ittt et e e st e e et re e e e aaeaean 8
1.7.2 WWED SEIVEN ..ttt ettt ettt e b e e b e bt e b e beesbeesreesanesane e 8
1.8 Brava ENtErpris@ (NET ...eeuuuiiiiiiiiiiiiiiiiiiitirttiercrere e ee e e e e s e e e s e s e eeeeeeeeeeeeeeeeaeaeeseaeaeeeseeeeeeeesseeseeenns 8
1.8.1 [1S CONSIARIATIONS. . .eiiiiieiieeitee ettt st st s e e st s e s beesmenesmneesanee s 8
1.9 Brava ENterpriSe LICENSE SEIVETuuuuuieieieieiiieieieieeeeereeeeeeeeeeeeereeereeseeeererrreerereeeaereeeeeeeeeeereeeeeeeaeeaees 8
1.10 Network communication CONSIAErations.........ceeveieiiieiiee i 9
1.10.1 Communications between the integration and the Brava Serverccccccccveevceeevcciveeeennee, 9
1.10.2 Communications between the Brava Server and the JP........cccccooiriiiiiininniinceeceeee, 9
1.10.3 Communications between the Brava Server and the clientc.cccceeveeniininenincneee, 9
1.11 Physical storage CoNSIderatioNSc.uuiiiieeii et e e e s e e e e e s sreree e e s e e ssnbeaneeeeeeennnnes 10
1.11.1 Brava Server storage consSiderationscccccuuiieieii it 10
1.11.2 P storage CoNSIAErationscocciiiiiiiiieiiiee e ccitee et eree e eree e et e e e sbae e e e sabae e e snree e eensees 11

p 2N To ¢ J8'e T o of =13 o 1 S | |

2.1 o or- 1 - 1 o 11 L Y PSP 11
2.1.1 Y or=1 11 = U o RPN UUPRRNt 11
2.1.2 Y or=1 11 =3 oYU 1 SR UUUUPRRNt 12

Brava!® scalability and fault tolerance 3

2.2 JP AU EOIEIANCE oottt sttt et r e 12
2.3 TYPES Of JOID PrOCESSING.cccc ittt e e e et e e e e bte e e e ata e e e entee e eenraeeeennreas 12
2.3.1 NATIVE IGC fIlE TYPOS et ettt et e e e et e e e e eata e e e e bte e e e eabaeeeseataeaesssaeaeanes 12
2.3.2 Automation-based PUbIiISNING..........uuviiiii e 13
2.3.3 Oracle's Outside In-based pUbliSNING.......ccueiiiiiiiiii e 13
2.34 SiNgle-page PUBIISNING ..ccc..viiiieee e s e ee e e e 13
2.4 MUILIPIE JOD PIrOCESSOIS .eeiiiiiiieieiiie ettt ettt e e e et e e et e e e eba e e e sataeeesbtaeeesbaeeesantaaeesaseneenanes 14

3 Integration scalability—info for integration designers................. 14

3.1 Client-side PUBIISRINGcccc e e e e e e bee e e ae e e e naeas 14
3.2 Providing documents t0 the Brava SEIVENccocciiiiiciiie ettt ssre e saeaee e 14
33 Pre-publishing dOCUMENTSoiiiiiiiee et e e e s sr e e e e e ba e e e sentaeeesntaeeeaaes 15

4 Net-It Enterprise.NET/Redact-It Enterprise Scalability................. 15

4.1 QUUEBUE SEIVET ..iiiiiiiiiiiittt ettt e e e a e et e e s s e bbb et s e e e s e s b e b e e e e e s sennareaeeees 15
4.2 o] oI oY o Yol =T1Y o PSPPI 15
4.2.1 GeNeral SCAlabilityc..uiiieiiie e e e et re e e nreas 15
4.2.2 JOb Getter SCAlabilityc.veee e e rta e e eaes 16

5 NIE/RIE integration scalability........cccceeeerreeeiirienniiireenciereeeeeeenenee. 16

5.1 Integration design and deVelopPmMENt.......coo i e 16

5.2 Providing documents to the jOb ProCeSSOr........ccciiiiiiiiii it e e s earee e 16

6 Measuring JP scalabilitycceeeereiiniieniieiiiiieiiicieccrenceecrencreeenenee. 16

6.1 Y E=Tot a1 o o] L= 1 1= USRS 16
6.2 Determing Job ParamMELErscii it e e et ae e e searaeeeaan 17
6.3 Configure the JP with a set of job threads........c.ooveiiiiiiiie e 17
6.4 YT T I a1 o] o LT 17
6.5 CalCUIAte The FESUIES...cooueiiiiiieee e e st e e e s 17
6.6 Reconfigure the JP and FEPEAT.........ii ittt et e e et e e e e eat e e e e et ae e e eentaeaeeans 18
6.7 (0 o= Y o o LI T o LU SR 18

A] ¢ 1= 4 T ol X3S L.

7.1 Brava! anNd NET-It QUEUESuuveuiiiiiiiiiiiiitiieteeeieteeeeeeeeeereereereeeeeeeeeeeeererereteteteteteseteteaeeeseeeeeseeeeeeeees 19

Brava!® scalability and fault tolerance

1 Brava!® scalability

1.1 Brava scalability and fault tolerance introduction
Brava scalability touches many parts of the system, including the integration in which Brava runs.

This section covers scalability and fault tolerance of the Brava system itself. Integration scalability
is covered in a separate section.

1.2 Component overview
Here are two simplified diagrams of the components that make up a Brava or Net-It’

Enterprise/Redact-It® Enterprise installation.

Brava AX Viewer Brava Flash Viewer Brava HTML5 Viewer

Brava Enterprise Brava Server Customer Integration

License Server

Job Processors

Brava Enterprise components

Brava!® scalability and fault tolerance 5

Net-It Enterprise or
Redact-It Enterprise Server

Customer Intergration

Shared File
System
Location

Job Processors

Net-It Enterprise/Redact-It Enterprise Components

1.2.1 Brava Enterprise server

There are two different types of servers for Brava: a Servlet-based server, called the Brava
Server or the Servlet Server, and a .NET-based server, called Brava Enterprise.NET (BEN). At
the time of this writing, there are slightly different feature sets in each product, namely
that the 7.1 Servlet Server has shipped with support for an Oracle-based database cache.
Brava.net is currently at version 7.0.1, and will not support a database cache when 7.1
ships.

The Brava Enterprise Server is responsible for many things:

e It exposes an HTML interface used by the ActiveX control to display files and
manage markups

e It also exposes a RESTful interface used by the Flash viewer and upcoming HTML5
viewer

e It caches renditions of published files and manages the publication of files

e |t can be used to store and manage markups

e Itis responsible for organizing licensing by talking to the Brava Enterprise License
Server (BELS)

The Servlet server runs on Windows and Linux. Brava.net runs only on Windows servers.

1.2.2 Brava Enterprise License Server

The Brava Enterprise License Server (BELS) is responsible for licensing the Brava Server and
the clients. It runs on a Windows server, and uses .NET. Only the Brava Server
communicates with BELS. The various clients and the Job Processor (JP) do not
communicate with BELS. Communication is over a dedicated, configurable port. Multiple
Brava Enterprise License Servers can be configured for purposes of fault tolerance. The
Brava Server polls a list of configured Brava Enterprise License Servers to accomplish this.

Brava!® scalability and fault tolerance 6

1.2.3 Brava Job Processor

The Brava Job Processor (JP) is the component of the system responsible for rendering
native content into representations appropriate for the various IGC clients. It processes
multiple files at one time, and multiple JPs—each on separate systems—can be installed to
provide additional capacity and fault tolerance. The JP is a .NET and Win32-based system
that runs on a Windows server.

1.3 File types
The Brava System (the Brava Server and the JP) processes different types of files in different ways,
and this can affect scalability and fault tolerance. See section Job Processor Types of job

processing.

Besides client-side publishing (see the next section), the Brava server makes decisions on how to
process a file based on the extension supplied to the publish request. The first decision made by
the Brava Server is which queue to place the file in. This is controlled by settings in the
Server.properties. Furthermore, the Brava server may decide to request a single-page publish (of
the first page in the file) for those file formats that support it. This is also controlled in the
Server.properties file. Note that these decisions only control which queue the job request
appears in. The JPs are then configured to process the jobs in one or more of the queues. See the
Brava Enterprise documentation for an explanation of queues as well as Appendix A, Brava and
Net-It queues.

1.4 Client-side publishing

In some installations, it can be useful to have certain file types published on the client, rather
than on the server. This is useful, for instance, when the system is viewing files that are both
small and infrequently viewed—when a bank uses Brava to review images of cashed checks, for
example. In that case, the integration can request that the client publish the file rather than the
server (via the convertonclient=true parameter). This is only supported by the ActiveX viewer,
and there are limitations with some formats (e.g., AutoCAD drawings with external xref files will
not convert on the client). Client conversion can be used selectively, based on logic in the
integration. If client conversion is used, the entire native document is streamed to the client's
machine and published locally using IGC drivers. This may result in slightly more bandwidth than
if the file is converted on the Brava Server and cached. When loading from the Brava Server
cache, the client will only request the pages needed, so a large, multipage document might result
in slightly less bandwidth. This concern is minor, though, and will likely make no difference in the
calculation of bandwidth, as that calculation likely assumes that the user will view the entire
document.

Client-side publishing has performance and scalability impacts. Since the entire file is streamed to
the client, there may be more bandwidth required than when using server-side publishing. If the
files contain only one or two pages, the difference here is negligible. Client-side publishing also
prevents the server from caching the published document, so if the same document is viewed
multiple times, server-side publishing is recommended, since the cost of document conversion is
incurred only once, upon first document view. The actual job of conversion or publishing of the
document on the server or client requires similar work and time on similar hardware.

Brava!® scalability and fault tolerance 7

1.5 Overall architecture concerns

Generally, there are two major scalability concerns in Brava. The first is the Brava Server's ability
to handle the expected client and integration traffic, and the second is the ability of the JP to
publish files in a timely fashion. The first issue is solved by using one or more servers (and servlet
containers like Apache Tomcat, WebSphere, WebLogic, etc.) suitable to the expected load. The

second issue is solved by installing the JP on a sufficiently powerful system and/or adding
additional JPs.

Bandwidth between the Brava Servers, the cache technology and location (e.g., file system versus
Oracle database) and the JPs is an important concern as well.

1.6 General Brava Enterprise Server

1.6.1 Brava Enterprise Server Bandwidth requirements
Multiple bandwidth usages must be considered when planning your Brava Server.

¢ The bandwidth required retrieving the source file. The source file is either
provided during the call to publish the document, or the Brava Server will retrieve
the file from a specified URL. In both cases, the source file will be inserted into the
cache during conversion. Either method requires sufficient bandwidth to bring the
file to the Brava Server in a timely fashion.

e The Job Processor will read the source file and write the results from and to the
Brava display list cache. Sufficient bandwidth must exist for all the JPs to allow the
JPs to read and write concurrently.

e The Brava Server serves up published files to the various clients. This bandwidth is
from the Brava Server web host (IIS, Apache, etc) to the clients, potentially running
outside the corporate network.

1.6.2 Display list cache scalability

Brava Enterprise uses a display list (DL) cache to store the result of “published on the server”
jobs. Files are published on the server when 1) the ActiveX Client, with the
convertonclient=false parameter, needs to view a file and 2) when the Flash and HTML5
clients need to view a file. There are two implementations of the DL cache: shared and
unshared. Shared in this sense is relative to other Brava Servers. Both cache
implementations are shared among clients that hit the same Brava Server. The shared
cache is implemented with the Oracle 11gr2 database, while the un-shared cache is
implemented with the file system. The scalability of the DL Cache is thus directly related to
the Oracle Database Management System hardware/software/network configuration for
the shared cache and to the network file storage hardware/software configuration for the
un-shared cache. The cleanup of the shared cache is up to the database administrator, as
Brava Server has no automatic cleanup in this implementation. Simple stored procedures
can be executed by the administrator to accomplish this. The cleanup of the un-shared
cache is executed implicitly and is controlled by many parameters found in a Brava Server
configuration file.

Brava!® scalability and fault tolerance

1.7

1.8

1.6.3 Markup storage

The core implementation of Brava Server stores and retrieves markup files. In the shared-
cache implementation, markup file data is stored/retrieved to/from the Oracle Database.
In the un-shared implementation, the markup file data is stored/retrieved to/from the file
system.

Brava Enterprise Servlet Server

The host server, along with its servlet container, should have sufficient bandwidth to
handle the expected calls to publish and view each file. In both the ActiveX and Flash client
cases, the server will likely be distributing large binary files from the Display List Cache to
the clients. The main servlet containers Brava Server supports are Tomcat, WebSphere and
Weblogic.

1.7.1 Server Load Balancing

Brava Server works well with load balancers. In a shared-cache mode, no special
integration code is necessary to dispatch the servlet invocations to the various Brava
Servers. This is due to the “client/server session IDs” being shared across all Brava Servers
in the system. However, in the un-shared mode, the session IDs are tied to specific Brava
Servers, which requires the integration to route the subsequent servlet invocations to the
same Brava Server that passed out the session id to the client.

1.7.2 Web server

In our performance testing, we have seen dramatic improvements by utilizing the Apache
HTTP Server instead of the Web Server found in Apache Tomcat Servlet Container.
Furthermore, isolating Apache on a separate machine also improved performance
significantly.

Brava Enterprise .NET

1.8.1 IIS Considerations

The IIS server chosen to host Brava Enterprise.NET (BEN) should have sufficient bandwidth
to handle the expected calls to publish and view each file. In both the ActiveX and Flash
client cases, the server will likely be distributing large binary files from the Display List
Cache to the clients.

At this time, the BEN server does not support the shared cache, so while you can install
more than one BEN server for fault tolerance, they will maintain separate caches of each
set of published artifacts. Any load balancing needs must be handled by the user's
integration.

1.9 Brava Enterprise License Server
BELS communicates with all Brava Server instances, serving up both client and server licenses.

The bandwidth between BELS and the Brava Servers will therefore see requests whenever a

client connects to the Brava Server.

Brava!® scalability and fault tolerance 9

It is possible to configure Brava Server to connect to multiple license servers to provide
redundant failover capability in the case of accessibility loss to any one license server.

When a client license is required due to a user request to view a document using Brava, the Brava
Server will attempt to obtain a license from one of the listed license servers. If communication
with the license server fails, another will be tried until either a license is obtained or the list of
license servers has been exhausted. If communication with a license server is lost, the Brava
Server should regain access shortly after communication has been restored without requiring a
restart of the Brava Server.

1.10 Network communication considerations

1.10.1 Communications between the integration and the Brava Server

The bulk of communications between the integration and the Brava Server occurs when
supplying the native file to the Brava Server for conversion. This transfer happens either
when the integration pushes the file to the Brava server or when the Brava server pulls the
file from the Integration. In either case, the entire file is eventually transferred over the
wire to the Brava Server, and the native file is stored in the display list cache until
conversions are complete, at which time it is deleted.

Therefore, there must be sufficient bandwidth between the integration and the Brava
Server to deliver the files to the Brava Server in a timely fashion under the heaviest
expected load. This should be measured by simultaneous first requests to publish files, as
once published, the file is cached and the Brava Server no longer needs to retrieve it.

1.10.2 Communications between the Brava Server and the JP

When publishing a file, the JP reads the file from its location within the display list cache.
This generally requires that the JP request the contents upon publication of the entire file
Furthermore, the published artifacts will be placed in the display list cache when
publication is complete, thus requiring another "file size" amount of data to be transferred
from the JP to the cache. Generally speaking, the XDL representation of a file is equivalent
in size to the native file. A good rule of thumb: Each conversion on the JP will transfer twice
the file size number of bytes across the wire.

Note that if you are using single-page publishing, the file is read a second time (although
perhaps not all of it) at least once by the JP, and the results are written back into the cache.
These results are much smaller than the original file, as they represent only a single page of
the file.

1.10.3 Communications between the Brava Server and the client

IGC very rarely sees network bandwidth as a constraint in even highly loaded Brava
installations. This section provides some guidelines on what is sent across the wire and how
big the load is.

1.10.3.1 ActiveX Client
The ActiveX client can operate in two modes: client conversion and server conversion.

Brava!® scalability and fault tolerance 10

In the case of client-side conversion, every client that attempts to view a file will have
that entire file sent across the wire to the browser for conversion. Thus, the
bandwidth required is the number of simultaneous viewing clients times the size of
the file. Furthermore, each client must download the drivers to perform the
conversion, but this download only happens once per client.

If you are using server-side conversion, then the client will request the published XDL
artifacts from the display list cache (via the Brava Server), and the transferred
amount will be, at most, the size of the published artifacts. This published content is
delivered in an on-demand manner to reduce bandwidth. For example, if only one
page is viewed by the client, then only one page of published content is downloaded.
If the client performs a more complex operation like a document-wide search or
publish, then all pages of the published content will be downloaded. Note that if the
thumbnail panel is visible, all the thumbnails exposed within it will cause downloads
of corresponding page published content.

1.10.3.2 Flash client

For the Flash client, the JP produces high resolution PNG or JPG resolutions of the
pages in each file, and those files are transferred, as needed, to the Flash client.
These files are often substantially larger than the vector representation of the file
(say, a Word file), and sufficient bandwidth must be present to move those images
(and smaller thumbnails) for each simultaneously viewed page. Note that if the
thumbnails are visible, or the view mode is in a page spread mode, then more than
one page of published content will be downloaded.

1.11 Physical storage considerations

1.11.1 Brava Server storage considerations
The Brava server requires storage for two things: markups and the display list cache.
Markup storage by the Brava Server is optional (they can be stored by the integration).

There are two kinds of display list caches in Brava Server, the file system (un-shared) cache
and the shared cache (note that the shared cache is not supported in BEN at this time).

Both caches are used to store the native file during conversion, and then to store the
published renditions of the file. Native files are only stored temporarily, but renditions are
stored until the rules in the server's configuration indicate the file should be removed.

The size of the file system cache can be controlled by the server.properties file, so storage
requirements are relatively straightforward to control.

Automated cache cleanup is not available for database cache sharing as it is with file
system caching. Oracle database administrators can manually clean up cache entries based
on access list date stamps. Multiple stored procedures are available to the administrator to
control the size of the shared cache in the database.

Brava!® scalability and fault tolerance 11

2

1.11.2 JP storage considerations

The JP does not store native or published renditions of documents. It only requires
temporary storage space for intermediate artifacts. Various process monitors can be
configured to make sure that temporary files are properly destroyed and don't take up too
much space. See the Brava, Net-It Enterprise or Redact-It Enterprise user's guides for
details on configuration.

Job processor

The job processor (JP) is key to the scalable conversion of documents. When used with Brava, the
JP's job is to publish file types to IGC internal formats (XDL or CDL) or to raster formats for viewing
by the Flash or HTML viewer. When used with Net-It Enterprise or Redact-It Enterprise, the JP has
more capabilities that are highly dependent on what the integration is trying to achieve. These
scalability notes apply in both cases.

It is very important to ensure that each JP is on dedicated software when attempting to provide
more throughput with one or more JPs. If the JP is installed on a system that has other
responsibilities, then the JP can't be scaled up to use all available resources, and it is therefore
fundamentally constrained from reaching its full performance potential on that hardware.

2.1 JP scalability

The JP scales in two ways. It can scale up with more hardware on a single machine (subject to the
limitations detailed below), and it can scale out to additional systems. Furthermore, when scaling
out to multiple systems, the workload of each JP can be varied so that the number of JPs and
responsibilities of each can be tailored to provide a responsive environment that matches the
kinds of documents specific to an individual customer. The types of technology used to process
your files (IGC native drivers, automation publishing or Outside In-based drivers, see Type of job
processing, below) also affect your decision to choose scaling up or scaling out, or both.

2.1.1 Scaling up

Scaling up is useful when more powerful hardware is available. Files published with IGC
drivers or Outside In drivers benefit from scaling up. Individual files will publish more
quickly, and multiple jobs can be published in parallel.

Each JP requests work from one or more queues and uses a single process to service each
request. The number of simultaneous processes is primarily controlled by the number of
cores in the system and the available memory on the system. A 16-core system can process
more simultaneous requests than a four-core system. Installing the JP on machines with
more cores will produce nearly linear performance improvements.

Generally speaking, you can start with between four and six threads per core. Therefore, if
you have a quad core machine, start by setting the total count of all threads in
jobprocessor.config to equal 16—24. Testing the system with representative samples of files
should then be conducted to further tune the system. As you increase the number of
threads, you can graph the number of threads versus the pages/second throughput. In
most cases, this graph will peak around four times the number of cores and then flatten

Brava!® scalability and fault tolerance 12

2.2

out as more threads are added, eventually decreasing as network, memory or disk I/0
become a bottleneck.

It is important to note that the JP is designed to work on dedicated hardware (physical or
virtual), and increasing thread counts will eventually consume all the CPU and memory
resources of the machine. This is by design. If you must run a JP on a machine that has
other duties, then the number of threads per core must be reduced to allow for other
software on the system to be adequately responsive.

Note that as of the 7.1 product family, you can increase the doc thread queue count above
one. The doc queue is responsible for conversion of files via IGC's automation publishing.
This queue does not scale quite as well as native driver conversion because the system
must enforce serialized access to the various COM automation interfaces it uses, thus
introducing an unfortunate bottleneck. Nonetheless, performance improvements can be
seen by increasing this queue's thread count, as the pre- and post-conversion tasks are
parallelized.

2.1.2 Scaling out

As throughput demands increase, a single JP may not be sufficient to handle the load. In
this case, you must add JPs to the system. Since the communication of jobs sends very
small amounts of data (the JP requests a job that is merely a few lines of text), JPs can be
added in great number without adversely affecting the queue servers. Besides increasing
overall throughput, scaling out also improves performance for file types processed with
Automation Processing (see below).

Each JP can be configured as described above, in scaling up. However, additional end user
performance improvements can be gained by tailoring JPs to do different things. This is
especially true in the case of Brava Enterprise and its single-page publishing feature. See
single-page publishing below.

JP fault tolerance

JP fault tolerance is achieved in two ways, just like scalability. On a single JP, each conversion job

is handled by a separate process, so if that process fails or times out, it doesn't affect other
conversion activities.

Adding JPs to the system increases this fault tolerance and provides robust fault tolerance in the

case of network or hardware failure.

2.3

Types of job processing

2.3.1 Native IGC file types

Many file types that are opened by IGC's technology use "native" drivers. Native drivers,
like dwg2dl.dll and pdf2dl, are drivers—maintained by IGC (potentially using licensed third-
party technology)—that know how to load one or more file types. Native drivers have the
most scalability options because all of them scale with multiple conversion processes on a
single JP and have no inter-process communication concerns. All recommendations for
scalability apply to file types opened with IGC native drivers.

Brava!® scalability and fault tolerance 13

2.3.2 Automation-based publishing

The JP can open any file type with a Windows shell-related "PrintTo" command.
Furthermore, using IGC's BI2DL, the JP can publish Office documents (Word, Excel,
Powerpoint) via Office's export to XPS capability. While this method provides very good
fidelity, it does have a serialization requirement that constrains scalability on a single
machine.

Because of the nature of Microsoft's Automation API used to drive Microsoft Office, all calls
to the office API (to open or export a document, for instance) must be serialized. The JP
and associated technologies (specifically, Net-It Now) ensures this serialization. As of the
7.1 family of products, the JP's document queue count can be increased beyond one, but
the jobs will still be serialized during the production of the XPS or print publishing actions.
All other activities taken by the JP (loading the XPS or EMF representation of the file,
exporting to PDF, redacting text, etc.) will happen in parallel.

Therefore, if your JP is using "print publishing" technology (BI2DL) and not INSO, while
some benefit is seen when increasing the number of simultaneous threads for office file
types, performance increases will plateau sooner than memory, CPUs or bandwidth would
suggest. As such, additional JPs may be required to achieve your performance goals.

2.3.3 Oracle's Outside In-based publishing
The JP can use Oracle's Outside In technology to process certain file types. Outside In
publishing is often referred to as Inso in this and other IGC documents for historical reasons.

When you configure a JP to use Inso (via the myrdrv.ini file), all of the scalability solutions
presented above are valid, as the JP can use Inso fully concurrently with no serialization or
other limitations.

You must choose to use either Inso or Automation (print) publishing, as the two
technologies result in published content with different coordinate spaces. Because of the
different coordinate spaces, markup files cannot be shared between renditions of the same
file from the two different conversion technologies.

2.3.4 Single-page publishing

In the case where the JP is servicing requests for the Brava server, it's often useful to
configure a single JP to do nothing but single-page publishing. This results in a much more
responsive client experience in heavily loaded environments.

When viewing documents with the Brava Enterprise ActiveX viewer, viewing most file types
will create two publish requests: one to view just the first page of the file (and destined for
the single queue) and one for the entire file. Furthermore, until the entire file's conversion
is complete, the ActiveX control will request individual pages as the user pages through the
file. Therefore, scalability and performance improvement can be achieved by creating
machines that run JPs capable of processing only single-page publish requests. To do this,
simply remove all thread types from the Jobprocessor.config file except for thread.single,
and set thread.single to be four times the number of cores on the machine. On the other
JPs in the system, remove the thread.single from each jobprocessor.config file. Controlling

Brava!® scalability and fault tolerance 14

3

which file types result in single page publishing requests is done in the server.properties
files. See the Brava documentation for details.

2.4 Multiple job processors

Multiple job processors provide several benefits. They can provide fault tolerance in the case of
machine or network failure. They can also provide identical capabilities and therefore increase
throughput. Lastly, multiple JPs can be configured to provide different capabilities (like the single-
page publishing dedication mentioned above). These ideas can be combined, with multiple
single-page publishing JPs and multiple general JPs.

If your system or integration has metadata or other knowledge about the kinds of files to be
published, you can configure queues and JPs to match the expected requirements by file types.
Certain JPs can be configured just to process a single type of file (say, Office docs, or perhaps a
certain kind of CAD file, or even TIFF processing from a scan engine).

Integration scalability—info for integration designers

The design of the integration to Brava influences the scalability and responsiveness customers
experience when they use Brava. This section talks about the options to change how Brava
publishes and views files and the effect of those decisions on the system's scalability.

3.1 Client-side publishing

As mentioned above, Brava's ActiveX client can "client-side publish" many files types. When this
happens, the native file is sent to the client machine and published on that machine. This is
suitable for smaller files and for cases where caching the viewed content is not necessary. If an
integration uses client-side publishing, the Brava server does not invoke the JP to publish the file,
and nothing is stored in the cache, so the Brava server component's load (in memory and CPU) is
lower. The client can be configured to either retrieve the native document directly
(clientretrieve=true), or ask the server to retrieve the file (clientretrieve=false). Each of these

decisions has consequences not only on security and access but on server bandwidth
requirements as well.

If you use client-side retrieval of the document, the document is requested via URL and the
bandwidth required to serve up that document is related to the document's storage, likely your
integrations vault of some sort. If the server is instructed to retrieve the document, then the
Brava server will request the document from the URL and then stream it to the client. Therefore,
bandwidth is a consideration between both Brava Server and the integration, as well as between
the client and the Brava Server.

3.2 Providing documents to the Brava Server

When an integration calls the Brava Server's publish API, it can provide the actual native file in
one of two ways. It can provide them in line with the call via HTTP PUT, or it can supply the URL
to the file, in which case the Brava server will attempt to fetch the file from the URL and place it

Brava!® scalability and fault tolerance 15

in the cache. Both methods result in about the same bandwidth use. If you supply a URL for the
file, the Brava server must have permission to fetch the file.

3.3 Pre-publishing documents

Many integrations will "pre-publish" files in anticipation of their later view by the Brava Server.
This is useful for the ActiveX client and can make the system more responsive. It's up to the
integration to decide if a file should be pre-published, and if so, when.

Pre-publishing is simply when an integration calls the Brava Server's publish method in response
to some event that will likely require the file to be viewed. This can be simply uploading the file
into a vault or perhaps the viewing of some associated file.

To pre-publish a file, simply call publish on the Brava Server as you would if you were about to
launch the viewer. Remember that the docid and version subsequently submitted to view the file
must match those used to publish the file.

4 Net-It Enterprise.NET /Redact-It Enterprise Scalability
Net-It Enterprise.NET (NIE) and Redact-It Enterprise (RIE) have the same scalability and fault
tolerance schemes available.

4.1 Queue server
The NIE/RIE queue server is an ASP.NET and Windows service (written in .NET) that runs on
Windows servers. They have two main features. The first feature is the ability to queue jobs
into various queues (as defined in server.properties), and the second feature is the optional
enhanced directory monitoring.

Jobs in the queue are simple sets of name/value pairs, and as such do not require much
space. They are stored on disk during processing, and are typically only a couple of KB in
size, so even moderate hardware can handle millions of jobs. The actual source and output
files are not kept in the queue.

4.2 Job processor
Aside from the comments on single-page publishing, the notes on JP scalability under the
Brava section above apply to the JP when running as part of NIE or RIE. See the section on
network communication considerations above.

4.2.1 General scalability

In the case of the JP running for NIE or RIE, further thoughts must be given to the work
being done by the IP for each job, as the JP in NIE/RIE offers more features, like redaction,
thumbnail generation, creation of markup files and exporting to various output formats. In
general, these additional job options scale in the same way Brava does, though they will
produce more network traffic if you request many output options for a given job. See the
section on network communication considerations above.

Brava!® scalability and fault tolerance 16

4.2.2 Job Getter scalability

The JP uses Job Getters to retrieve jobs from the queue server or from a file system
location (see the NIE/RIE SDK). Third-party integrators can also create their own job getters
for specialized use. The JP allows you to use multiple job getters at the same time, but note
that this increases the number of simultaneous jobs linearly with number of job getters, so

you must consider the number of cores on your JP and adjust thread counts accordingly to
deal with multiple job getters.

5 NIE/RIE integration scalability

5.1 Integration design and development

Your integration will generally construct a job request (a set of name/value pairs) and submit that
job to the queue server via push.aspx. The integration should provide a URL that will be called
asynchronously when the job completes. That URL must be able to process multiple requests as

jobs may finish simultaneously and out of order from how they were submitted. Therefore, the
system hosting that URL must scale with your JPs.

5.2 Providing documents to the job processor

The source files being supplied in a job are not passed to the JP. Their locations are included in
the job file, and the JP will read those files when it loads the files. This includes source files,
markup files, raster images for stamping and redaction scripts. Since the JP processes files
simultaneously, the JP will read source files simultaneously. This mainly requires that the

bandwidth between the JP and the file storage location is sufficient to provide data in a timely
fashion.

6 Measuring JP scalability

To get the most out of a JP, it's important to measure its performance on representative

hardware and with a sample set of documents that are similar to what you expect to see in
production.

This section shows how to do this, using the Net-It Enterprise test client. The test client is
available from IGC support.

6.1 Select sample files

In this example, we will take a collection of PDF files and publish them to XDL. This is essentially
simulating the way Brava uses a JP. To test Redact-It Enterprise, you might select Office
documents and publish to PDF while including a redaction script.

The document set is 113 documents, 2,951 total pages, the biggest single document is 540 pages,
and there are a range of page in the 10s, 50s and hundreds of pages.

Brava!® scalability and fault tolerance 17

The important thing here is to keep the sample set the same through the entire exercise, and
that the samples are similar to production files.

6.2 Determine job parameters

Decide what kind of job you'll be submitting. In this example, we're simply publishing the entire
document to XDL. Tests could also include publishing very large JPGs or PNGs (to simulate the
flash viewer) or publishing many documents to TIFF (something NIE is good at).

6.3 Configure the JP with a set of job threads

Edit JobProcessor.config and set the thread count to a starting lower limit. In this case, we're
testing on an eight-core machine, so we'll start with an initial thread count (on the PDF queue,
since we're only testing PDF source files) of four and work up from there. Save the config file and
restart the JP.

6.4 Send the jobs

Using the test client, send at least one job for each file.

| File View Jobs Tools
4 h | 0@ 7| @) Filter: [=] Job Sender: Queue ServerJob ¢ ~ Job Destination: http://cluny/queu ~
Jobs:
) s | - Results: d:temp'samplefiles\scalability'pdfivbadev. pdf o~
©) Single Fie: | ~ | Browse ... =-d:temp'samplefiles\scalability'pdfiViispDev.pdf
& ish ol fles n) i Sent: dtemp\samplefiles'scalability\pdfilispDev. pdf |
8 o 2t Results: d:temp\samplefiles\scalability\pdfVlispDev.pdf
[7] Recursive d:\temp\samplefies\scalabiiy\odf - & dtempisamplefiles scalablity\pdfilisptut pef
o . = : i~ Sent: d'\temp\samplefiles\scalability\pdfivlisptut pdf
D oo = et 8} Sost ooy SE: Sop Mookorng Results: d templsampleflesiscalability\pdfivlisptut pdf
Pick a directory to monitor: =-d:Memp bility\pdfiwgh_section6. pdf
- Sent: dtemp'samplefiles\scalability\pdfiwgh_sectionb pdf
. Results: d'\temp\samplefiles\scalability'pdfiwgh_sectiont pdf
ot |R = f 5 — 0 0 & d'_“mp‘sanpleﬂlﬁkmlabil|ty\pdfmha|5new,pdf
Ok - | l]] Mo IJOb ‘ i Sent: d:\temp'samplefiles\scalability\pdfiwhatsnew. pdf
y '~ Results: d:temp lefil |ability\pdfiwhatsnew. pdf
. (=-d\temp lefilesiscalability\pdfWINSPEC.PDF
Output Filename: Sent: d:\temp\samplefiles'scalability\pdfiW/INSPEC.PDF
Pick a directory for the output: Results: d:temp\samplefiles'scalability\pdfiv/INSPEC.PDF
d\temp\netit\out\ = Browse ... (=)-d:\temp\samplefiles\scalability\pdfiword_doc_autorendered201.pdf
i - Sent d'temp\samplefiles\scalability\pdfiword_doc_autorendered201.pdf |
Heartheat File: .. Results: d:temp'samplefiles\scalability\pdfword_doc_autorendered201.pdf -
General Options
Job Details:
| Generate text from file] file
=l m [7] Export one file per page i B
Pages to publish: Seperate page numbers by | Contert-Length 3371
. : Content-Type muttipart form-data; boundarys—————————8ce ..
Output Page Size {must match settings on JP). Expect 100 continre |
Host cluny-9939 1
PDF Options .
i ige_ofi_source d:\temp\samplefilesscalabilty\pdf\Visp Dev.pdf
Export PDF as PDF/A-Tb source d-\temp'\samplefiles \scalabilty\pdf\ Viisp Dev pdf
Tiff Options target d:\temp'\netit\out\ViispDev pdf 1328691144824
outputformat xdl
Tiff color depth (BPP) | <default> = [0 beOCR notificationur hitp://cluny:9999
notificationverb muktipartpost
Tiff DPI: fex: 150, 300) test_sequence 1276
Force Tiff Monochrome (ovemide BPP) test_creation_time 2/8/2012 8:52:24 AM
test_unique_id a275eb95-9a50-4fcl-aab6-64ddF9c4519
ige_client_thread_sen... Thread 1
igcqueuesubmissionti... 2/8/2012 4:52:24 PM =
|| |- vaone.._x

Keep Source Jobs Ou ding: 0 Jobs Compl

i: 113 Job Destination: http://cluny/queueserver Notification URL and Port: http://cluny:9999 Pages/Sec 10.97

6.5 Calculate the results

When the jobs are complete, you can see the pages per second on the status bar of the test
client. Note that number. Alternatively, you can use the Save Result Jobs as CSV to save the
results. We're going to calculate the rate of publication in pages per second, the preferred

Brava!® scalability and fault tolerance 18

measure, since documents per second can be imprecise because of variation in document page
count. Megabyte per second also is too vague of a measure, as some documents may be small in
size but contain many pages, while others may be large in size but contain few pages. If, however,
you're processing primarily single sheet CAD documents, then documents per second may make

sense as a measure.

To calculate the pages per second from the CSV file, open it as a spreadsheet, and find the
minimum value for the starttime field. Find the maximum value for the endtime field. Subtract
the two, and that's the time taken to run all the jobs. Convert that value to seconds, and divide
by the total number of pages processed (sum up the publishedpagecount for all jobs). That's your

average pages per second.

See Scalability Calculation Speadsheet.xIsx

6.6 Reconfigure the JP and repeat

Now, stop the JP, go into the JobProcessor.config file, and increase the thread count for PDF to
eight. Restart the JP, clear the jobs from the test client and repeat the test, 5.4 and 5.5 above.
Continue to do this as you increase the thread count incrementally.

6.7 Chart the output

After assembling the data from each run (pages/sec versus thread count), you can graph them
(pages/sec on the x axis, thread count on the y axis) and see how the values increase until some
point and then level out. Set your production environment to use the thread count that
corresponds with the highest point on the graph.

Your graph should look something like this:

Brava!® scalability and fault tolerance 19

PDF to XDL Conversion
(pages/sec)

18

16

TN
ol f T~

==@==0ne JP

pages/sec
[ExY
o

0 T T T T T 1
0 10 20 30 40 50 60
thread.pdf count

7 Appendices

7.1 Brava! and Net-It Queues

Brava Enterprise, Net-It Enterprise and Redact-It Enterprise all use the same queuing logic to sort
incoming files into the appropriate queue for publication. Job processors are then configured to
service one or more queue with one or more threads. This is the fundamental way that the
publishing activity is scaled up (on a single JP machine) or out (across multiple JP machines).

Files are sorted into the appropriate queue based on their extension (no file type detection is
performed at this point except the actual extension in the filename) in the mapping in the
Server.Properties file. The entries look something like this:

publish.request.types=doc,drw, pdf
publish.request.extensions.doc=doc,docx,rtf,xls,xlsx,xlw,...
publish.request.extensions.drw=000,906,907,bmp,cal,cg4,...
publish.request.extensions.pdf=pdf

publish.request.types establishes three queues on the server, called doc, DRW and PDF.
Each queue type must have an extension mapping, established in

Brava!® scalability and fault tolerance 20

publish.request.extensions.<type>. Each line establishes what extensions go in each
queue.

The Brava Server has two additional queues, called "single" and "prq." Single contains single-page
publish requests (for those types that support it as established by the
single.page.publish.allowed setting in server.properties. Prq is used for files whose
extensions don't map any extension given in all the publish.request.extensions.” entries.

By default, the JP is configured to service all of these queues (all five in the case of Brava JPs, just
the three given in Server.properties in the case of NIE and RIE).

Integrators and installers are free to establish additional queue types for added granularity. For
instance, if TIFF files are frequently published, perhaps the following line would be added to
Server.properties

publish.request.extensions.tiff=tif,tiff

And the TIFF and TIF extension would be removed from the DRW queue.

If you establish new queue types, you must establish matching settings in at least one JP to
service that queue. Modify jobprocessor.config as follows:

thread.tiff=3

This separation of queues allows you to portion work out to different JPs. A common scenario is
to create many JPs that service the .single queue in Brava to provide the best possible
responsiveness when a file is viewed for the first time.

For NIE, the several JPs could be established to only publish PDF files, for instance, if a very high
volume of PDF jobs are expected.

